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Abstract
Blockchain-based applications provide many promising opportunities to over-
come the challenges associated with the Internet of Things (IoT) ecosystems (eg,
centralized architecture, data integrity, and reliability). In particular, blockchain
technology offers many desirable features for IoT infrastructures, such as decen-
tralization, trustworthiness, trackability, and immutability. However, while log-
ging all transactions in a distributed blockchain ledger provides transparency, it
also makes it possible to compromise user’s privacy, thus posing a grand chal-
lenge to IoT architects and implementers. Over the past years, a set of solutions
have been proposed for various scenarios, to address these privacy issues. In this
paper, we survey these solutions, classify, and analyze their advantages and dis-
advantages. We also introduce an evaluation framework to evaluate the quality
of the privacy-preserving based on an adjustable weighting scheme. Finally, we
rate the analyzed solutions based on their privacy ranks, and hope our evaluation
can shed light on the future design of privacy-preserving solutions applicable for
blockchain-based IoT platforms.
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1 INTRODUCTION

Blockchain-based applications have been widely employed to address issues such as intensive centralizing, scalability,
security, and reliability with Internet of Things (IoT) systems. IoT systems are characterized by multi-party ecosystems,
with data exchange among different devices and parties.1 The tamper-proof, immutability, and transparency features of
blockchain make members able to trace all transactions (past and present), which provides a reliable way to identify data
leakages or manipulation.2-4 The integrity of huge amounts of IoT sensory data can be assured in a blockchain-based
distributed cloud from sensor to service with no need to rely on trusted third parties.5 Data provenance tracking can be
provided by programmable smart contracts, which act as the policy evaluation entities and event loggers, and allows users
to check all data transfers (eg, acquired automatically from IoT devices) and usage transactions providing assurance that
only transactions conforming to the contract policies are authorized and registered in the blockchain.6

IoT system restrictions, namely resource-constrained devices, low computational power, and limited capacity and
bandwidth limit blockchain-IoT applications. For this reason, different projects, such as Maru,* Riddle&Code,† IOTA,‡
and IBM’s device democracy, aim to fit blockchain to IoT platforms, to achieve interoperability, trust machine-to-machine
(M2M) interaction, data integrity, and device-based permission. Maru sensor platform, developed by chain of things
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(CoT),§ is a hardware-as-a-service solution (HaaS) to address IoT’s issues with identity, security, and interoperability
in a multi-layer structure.7 A cryptographic tagging solution for blockchain has been described by Riddle & Code in
which IoT devices are given a trusted digital identity for trustful M2M interactions.2 IBM describes a device democracy
network8 where each IoT device functions as a self-contained business, sharing capabilities and resources, such as com-
pute cycles, bandwidth, and power, with other devices. IOTA is a blockless ledger providing fast transaction settlement
and data integrity for the IoT industry based on the Tangle ledger. The Tangle is a directed acyclic graph (DAG) for stor-
ing transactions.9 The transactions are the only data storage units in IOTA and are issued by nodes of the Tangle graph.
To issue a transaction, users must contribute to the network’s security and approve two other transactions.9 Transactions
are verified in parallel and accepted by Tangle almost instantly, which provides IOTA high transaction rate capacity.5

Despite the features and benefits of blockchain-IoT, the possibility of privacy disclosures in the blockchain is still
a worrisome issue for IoT users. IoT networks are data-centric having a large number of devices generate and upload
private data such as sensory, personal activities, and medical data.5 Uploading such data to the blockchain with its dis-
tributed ledger directly opens the door to some or all of it being exposed via the linking attack10,11 and traffic correlation.12

The paparazzi-minded of the world might stage attacks on blockchain-IoT to automatically track patients and hospital’s
biomedical devices in a smart healthcare system,13 monitor users’ location and movement in IoT smart transportation
systems,14,15 and characterize users’ power consumption in an IoT smart grid.16,17 Much information can be gleaned from
a single transaction. For instance, in a typical power transaction in an IoT network, a consumer needs to publish his/her
own demand or supply to the blockchain. Thus, depending upon the conditions, the trading partners as well as all engaged
devices are identified, authenticated, and connected through cloud servers.18

It has been shown that the basic privacy feature of blockchain, namely pseudonymous IDs, is insufficient to preserve
privacy. Users are identifiable by mapping virtual identities in the transaction graph.19,20 Linking digital assets and tracing
transactions are possible by address mapping21 and traffic correlation.22,23 Several blockchain-based solutions have been
introduced to address the privacy issues of blockchain-IoT systems. Generally, these solutions are based on peer-to-peer
(P2P) transactions in the blockchain framework and can be classified into four classes, viz., obfuscating data or iden-
tity, trust grouping, secure data separation, and cryptographic methods. Different features are provided in each class
depending on the targeted privacy issue, priority, and the techniques used.

In this paper, we review the privacy concerns of IoT users of blockchain-based applications. We classify the various
solutions based on the aforementioned classes. Overall, our research is geared toward a design evaluation framework that
facilitates quality evaluation of the privacy-preserving solutions. We define the evaluation criteria in two groups to indicate
the advantages and disadvantages of a protection solution, namely privacy features and privacy risks. We introduce a
weighting scheme to rank the individual criterion to indicate their influence on privacy protection. This weighting scheme
can be adjusted based on privacy priority or evaluation purposes. This flexibility makes evaluators able to set the criterion
based on their purposes. To represent the numeric value associated with each evaluated privacy-preserving solution, we
introduce the privacy rank. The privacy rank of a privacy-preserving solution is the resultant of the provided privacy
features and the created privacy risks.

The main contributions of this article are as follows:

• We classify the privacy-preserving solutions for blockchain-based IoT applications, and give a detailed analysis of
the privacy protection offered by each solution. Our classification and analysis will be helpful for security engineers
who want to preserve user’s privacy in the blockchain-based IoT systems.

• We define an evaluation framework to calculate the quality of the protection provided by a privacy-preserving
solution based on introduced privacy features and privacy risks. We introduce the privacy rank to show the overall
quality of the privacy-preserving provided by a protection solution.

The rest of this article is organized as follows. In Section 2, we review blockchain-based IoT applications and explain
the differences between blockchain-IoT implemented at the service layer and at the end-device level. Section 3 describes
privacy concerns of IoT users in blockchain-based applications. In Section 4, we present our classification of the
privacy-preserving solutions and review each one. Our proposed evaluation framework is introduced in Section 5 and the
evaluation results and analysis are explained in Section 6. Finally, we conclude the paper in Section 7.

2 BLOCKCHAIN-BASED IOT APPLICATIONS

Since IoT ecosystems are data-centric and consist of devices equipped with data-collecting sensors, most applications
require special-purpose centers to store and analyze a hough amount of raw data. As shown in Figure 1, an IoT ecosystem
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F I G U R E 1 IoT ecosystem
involves three layers of IoT device,
service, and enterprise layers

can be divided into three layers, namely the IoT device layer, the service layer, and the enterprise layer. The device layer
consists of physical components, such as IoT end-devices, gateways, and network connections. Normally, IoT devices are
CPU, RAM/ROM, and/or I/O-constrained and have embedded low-power crypto-accelerators for security purposes.24 The
service layer has hardware and software for such things as data flow tools, stream processing, data storage, and external
access. Access control and interconnections to other IoT platforms are done at the service layer. The enterprise layer is a
collection of business applications and consists of service management technologies.

Blockchain technology can be employed at either the device level or at the service layer. Capabilities vary depending
on where it is employed. Due to the computational and storage limitations of IoT devices, implementing blockchain at the
service layer provides more flexiblity. Deploying at the service layer requires less modification to current platforms, like
upgrading or reprogramming IoT devices. Furthermore, the sensory data gathered from IoT devices can be aggregated
and analyzed by an agent, such as IoT gateway, to be packed into a blockchain.5 Blockchain functions, that is, block
generating and verifying, which are resource consuming, can be better performed on the service layer. In comparison to
the simplicity of the blockchain-as-a-service (BaaS) model, employing blockchain on IoT end-devices is more complicated
and distributing blockchain data on IoT devices is more vulnerable to distributed denial of service (DDoS) attacks.

On the other hand, deploying blockchain directly to IoT end-devices improves data integrity. Performing P2P iden-
tity authentication between IoT devices based on the distributed ledger improves the security of trust management for
authentication.25,26 In the BaaS model, the agent has a proxy role between IoT devices and the blockchain network.
The trustworthiness and reliability of the agent are the worrisome issues. With this view, the single point of failure,
man-in-the-middle (MitM) attack, tampering, and data injection are possible with an untrusted or compromised agent in
the blockchain as a service deployment for IoT.5

2.1 BaaS for IoT

In this implementation, the blockchain provides a service layer and IoT end-devices are not blockchain members. Nor-
mally, the IoT gateway is a member of the blockchain and collects the data from IoT end-devices to generate transactions.
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In the smart home model introduced by Dorri et al,27 a high resource device, known as the miner, controls all IoT devices.
The miner centrally processes incoming and outgoing transactions to and from the smart home. IoT devices use the
keys generated by the miner and all collected sensory data are managed by the miner in local storage. The miner imple-
ments the core function of blockchain, that is, authenticate, authorize, or audit transactions, and mining transactions
into blocks.5,27

Ozyilmaz et al28 proposed a blockchain-based P2P network of IoT gateways to store data and code fragments. In this
network, the data is stored in a torrent-like distributed file system. IoT gateways operate as the blockchain nodes and
also store and route data. IoT end-devices send their data to the gateway in an always-listening network based on LoRa¶
protocol. In the blockchain-based credit-sharing framework introduced by Firoozjaei et al29 for electric vehicles (EVs),
an EV joins the blockchain and plays a bridge role between other EVs and blockchain members. In the blockchain-based
model introduced in Reference 30 the agents, running on IoT gateways, collaborate to detect DDoS attacks from IoT
botnets. The IoT gateways, known as agents, employ a blockchain to securely reach a consensus about the information
metrics that are locally calculated at the gateways of the system. The gateways’ computational and storage capabilities are
used to give more flexibility in software installation than IoT devices do.

Offloading the mining process is used by some solutions to circumvent resource limitations in networks with lim-
ited computational power, for example, IoT devices. Xiong et al31 proposed supporting mobile blockchain applications
where the mining process can be offloaded to a third party offering edge computing services. Exploiting cloud com-
puting has been suggested to address storage limitations and mitigate latency issues with blockchain-IoT applications.
To address storage issues, Sharma et al32 proposed a blockchain-based distributed cloud architecture for IoT networks.
The intermediate control nodes, enabled with a software-defined network (SDN), are located at the edge of the IoT net-
work for computing purposes. The SDN technique can be used to move the computing resources to a fog layer at the
edge of the IoT network to have a minimal end-to-end delay between IoT devices and computing resources. IoT data
streams are gathered, classified, and analyzed at the edge of the network and the distributed cloud. In this model, IoT
devices have no role in the blockchain and all blockchain functions are performed at the cloud layer with high storage
capabilities.

2.2 IoT-involved blockchain

Implementing a blockchain at the IoT device layer requires IoT devices to be able to provide blockchain functions, such
as transaction generating, verifying, and even block mining. A blockchain vehicle ad-hoc network is an example of an
IoT-involved blockchain. Leiding et al33 introduced a blockchain-based vehicular ad-hoc network having a decentralized
and self-managed VANET system. Due to the low computational power of most IoT systems, all blockchain functions
cannot be done by the end-devices. Therefore, entities with different capabilities are needed to provide blockchain func-
tions, that is, lightweight node, full node, and miner. In this case, miners mine transactions and pack them into blocks.
The miners need to have enough computational power and capacity for storage and computation. The full nodes require
massive storage to store all blockchain blocks and a modest amount of computation power. Full nodes do no mining pro-
cesses. The IoT end-devices run as lightweight nodes generating transactions and storing block headers, but are not able
to mine.5

The lightweight nodes require minimal storage capacity and computational power. In the blockchain-based IoT
devices’ firmware updating mechanism, suggested by Yohan et al,34 a lightweight node does not participate in the mining
process and only needs to synchronize data stored in the local ledger with that from the public ledger. The lightweight
nodes (IoT devices) participate in access control management by generating private keys or registering with a certifi-
cate authority (CA).5 The Hyperledger Fabric** introduces a blockchain with an execute-order-validate architecture in
which each transaction needs only be executed by the subset of the peer nodes (eg, IoT devices) necessary to satisfy the
transaction’s endorsement policy. The enrolled nodes maintain their private keys for access control. In the Hyperledger
Fabric-based blockchain proposed by Li et al25 for IoT, two groups of nodes are introduced to manage the blockchain con-
sensus, namely consensus nodes, and non-consensus nodes. The consensus nodes participate in the blockchain functions
of block generating, verifying, and broadcasting, and the nonconsensus nodes are lightweight IoT devices. In this model,
each node generates a key pair and needs to be enrolled with a CA in order for authentication.

The low storage capacity of lightweight IoT devices prevents them from storing all blockchains.35 To address this
limitation, Kim et al36 proposed a storage compression consensus (SCC) algorithm, which compresses a blockchain on
each device. The SCC improves existing voting-based consensus algorithms for private blockchain-based IoT networks.
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With this algorithm, a node can reduce the size of the blockchain by hashing the previous block. The compressed block
and the next block would be used for consensus.

3 PRIVACY ISSUES

Due to the distributed nature of blockchain, the availability of transactional data in the shared ledger makes blockchain
users susceptible to privacy attacks, such as linking attacks or malicious data mining. In a linking attack, an attacker tries
to find some facts linked to a user’s private data.37,38 To characterize sensitive information, the attacker monitors users’
transactions for a period of time. The malicious data miner is able to extract private information related to the users from
the information available in the shared ledger. This information can be used for user profiling and behavior prediction. For
instance, marketing firms could use behavior and appliance usage information for unwanted or malicious purposes, for
example, directed advertisements.39 To counter these attacks, several privacy approaches have been proposed to decouple
users’ pseudonymous identities from the specific transactions they make, thereby preventing attempts to link transacting
parties based on data that appears in the blockchain.23

In this section, we introduce the possible privacy issues in blockchain-IoT applications. Basically, privacy challenges
with users of blockchain-based IoT applications can be classified as either human-centric or device-centric. As shown in
Figure 2, each class of these privacy challenges consists of different issues, which are explained as follows.

3.1 Human-centric privacy issues

3.1.1 User profiling

User profiling is a technique to characterize a user’s behavior, for example, daily activities or interacting partners, and
can be used to visualize user profiles, department profiles, organizational profiles, and multi-dimensional profiles.40 In a
smart grid, to match consumption on the power with available supply, the patterns of consumers’ demands are extracted.
Smart IoT devices, for example, smart meters, facilitate pattern extracting from power consumption. Blockchain-based
applications for power systems make it easier to characterize consumers’ power consumption which leads to user profil-
ing. Albert et al41 showed the possibility of consumer’s thermal profiling based on temperature-dependent consumption
such as air conditioning or heating. Power consumption related information available in the blockchain such as amount,
manner, and time, can all lead to user profiling.

At the same time, predicting consumers’ future usage is very useful and legitimate for demand management in a
smart grid. Smart grid resource management, based on the current usage and the future demand, needs to monitor and
predict consumers’ future usage. In a blockchain-based IoT system, a consumer’s future behavior can be predicted based
on the information reported by the smart devices to the blockchain. For instance, a smart home may know the absence
of the inhabitants, for example, based on their calendar, and it may trade energy future accordingly.42 Publishing this
information in the shared ledger makes it possible to infer an IoT users’ future activities, for example, energy consumption
or meeting a friend.

F I G U R E 2 Privacy issues with the blockchain-based IoT
applications
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3.1.2 Group profiling

In group profiling, an adversary uses IoT user profiles to model a group.43 Group profiling is based on heterogeneous
information associated with a group of IoT users who show similar interests, requirements, or similar behaviors/activities.
The information available in the shared ledger is a good source of information which can be used directly or indirectly
for profiling. The peer-to-peer (P2P) or device-to-device (D2D) transactions logged in blockchain ledger can be mined to
extract the relationship and similarity factors for profiling a group of IoT users.

3.1.3 User identification

Basically, the anonymity of users and transactions in the public permissionless blockchains (eg, Bitcoin) relies on
pseudonyms.44,45 Traffic analysis can easily identify a transaction’s source and infer the trading rules of the pseudonyms
by the transaction records in the ledger.46,47 Based on this, an adversary is able to identify the user by monitoring and ana-
lyzing different transactions sent by or destined to the user. Meiklejohn et al48 have shown that it is possible to identify
Bitcoin users by clustering users’ different addresses.

3.1.4 Localization and tracking

The ability to determine and record an IoT user’s location through time and space leads to localization and tracking
threats. IoT technologies (eg, smart wearable devices) not only support the development of location-based services (LBSes)
to improve their accuracy49 but also expand those services to indoor environments for smart retail.50 In blockchain
location-based applications, such as EV charging and vehicle-to-vehicle payment (V2VP), the shared information of
the interactions between smart things and the systems leave data trails which compromise a user’s location privacy. In
blockchain-based applications for electric vehicle charging (EVC) the location of the EVs and the charging station are
used for finding charging stations and path routing. Detecting a user’s position, tracking vehicles, and exposing a user’s
actual energy need are possible based on the information in the shared ledger.51

3.2 Device-centric privacy issues

3.2.1 IoT device profiling

As IoT devices become more connected, more private data will be shared to authorized and unauthorized entities.52

Although the smart contracts in blockchain set the access rules, conditions, and time to restrict the control and access to
the shared data,53 there are enough data for device profiling. The information related to the ownership, identity, relation-
ship attribute, capabilities, and features of IoT devices available in the blockchain, enable partners to identify and profile
IoT devices related to a specific IoT user. For instance, in the blockchain-based authentication model introduced for IoT
in Reference 25, the identity information of IoT devices needs to be registered in the blockchain every time a new device
is added. In this model, each device’s ID, public key, hash of critical data, and other information are stored in the shared
ledger and all nodes need to be enrolled on the CA server. Relying on an intermediary center for authentication opens
the possibility of device profiling.35

Non-intrusive load monitoring (NILM) systems collect power consumption data from smart devices (eg, advanced
metering infrastructure [AMI]) and process to determine users’ electrical load schedules. Typically, it is done by disag-
gregating the data stream available in the blockchain into individual load signatures and matching each signature with
reference signatures stored in a database. NILM can be used to identify specific IoT device/appliance brands and might
even identify malfunctioning appliances.39

3.2.2 Targeted advertising

User’s private data logged in the blockchain could be used by other members (eg, a service provider or a utility’s partner) to
send customers targeted advertisements. Targeted advertising based on user’s in-home activities transgresses the current
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norms of information flow and creates new privacy concerns. IoT user’s transaction history available in the blockchain
opens the door to target advertisements, such as device repairs or upgrades.39 This information indicates IoT user’s prop-
erties (eg, a particular IoT device), which can be used for advertising. Based on this, we classify it as a device-centric
privacy issue, though the IoT user is targeted for advertising.

3.2.3 Criminal abuse

Availability of device-related data (eg, power consumption data) from the blockchain makes criminals able to moni-
tor and extract IoT devices’ transactions and traffic. They could process data to compile lists of household IoT devices,
which would lead to the proliferation of malware targeting IoT devices or some property crime.39,54,55 The vulnerabil-
ities of IoT devices can be used by IoT malwares to launch a wide range of distributed DDoS attacks.55 The Mirai,56

Bashlite,57 Luabot,58 and Hajime59 are examples of botnet attacks launched exclusively by IoT devices, which have been
compromised by IoT malwares.54,60

3.3 Privacy issues with IoT blockchain implementation modes

The aforementioned privacy issues are potentially feasible in both modes of blockchain implementation in IoT systems,
namely, BaaS and IoT-involved blockchain applications. In BaaS applications, the blockchain provides a service layer
and its transactions are originated by or destined to IoT users. In these applications, human-centric privacy issues, for
example, user profiling, are more challenging. Since IoT end-devices provide blockchain functions in the IoT-involved
blockchain implementations, device-centric privacy issues are more challenging for IoT users. Transactions generated
by IoT end-devices, logged in the blockchain, may reveal information related to the ownership, devices’ types, identity,
capabilities, and features.

4 CLASSIFICATION OF PRIVACY-PRESERVING SOLUTIONS

Depending on the application and the importance of privacy, several solutions have been introduced to preserve IoT
user’s privacy in blockchain-based applications. Privacy-preserving solutions can be classified into four classes, namely
obfuscation, cryptographic, trust group, and data isolation. Figure 3 shows the classification of the protection solutions.
In the obfuscation class, which includes data hiding, rout hiding, and ephemeral pseudonyms solutions, the anonymity of
user and transaction untraceability are the privacy goal. Data confidentiality, transaction unlinkability, and untraceability
are the main privacy goals of the cryptographic class. The solutions of key management, zero-knowledge, ring signature,
and multisignature are in this class. To share data in the trust group class, at first a trusted link must be created among

F I G U R E 3 Classification
of the privacy-preserving
solutions for blockchain-based
IoT applications
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transaction parties. Transaction untraceability is the main privacy target in this class, which consists of partner matching
and secret sharing solutions. In the data isolation class, private data is settled separately from the main blockchain ledger.
Off/on-chain, sidechain, and subnetwork blockchain solutions are in this class, that has transaction anonymity as its
primary privacy priority.

In this section, these solutions are described in more detail. We discuss the advantages and disadvantages of each
solution and explain techniques that can attack them.

4.1 Ephemeral pseudonyms

Ephemeral pseudonyms (eg, ephemeral wallets in Bitcoin61) are used to provide anonymous services in the blockchain.
They make it difficult for a linking attacker to run the one-to-many mapping between a physical user and several virtual
identities among the various transactions recorded in the shared ledger.5,18,23 In such systems, users randomly generate
new message addresses for each new transaction.18,38,42,62 In the solution proposed by Dorri et al38 a fresh ID (used as a
key) is used for each transaction. To avoid connecting the pseudonym and a user by matching the energy consumption
and the user’s behaviors, in Guan et al62 each user generates multiple pseudonyms and submits his power consumption
data under different pseudonyms.

Despite these pseudonym solutions, heuristics analysis can identify users. Meiklejohn et al48 identified the Bitcoin
parties and the interactions between them using a clustering heuristic based on change addresses to cluster addresses
belonging to the same user. Furthermore, the ephemeral pseudonym solutions are not practical for financial transactions,
which need permanent or long-term IDs, and because of the heavy computational burden imposed on IoT devices.

4.2 Data hiding or obfuscation

Obfuscating user’s energy consumption data is used to protect user’s privacy in References 63-65. The semantics of
energy consumption can be used for IoT user profiling. Abidin et al63 try to preserve consumer’s privacy by hiding the
details of their energy consumption. By aggregating the private data of the energy usage reported by the smart meters
in Reference 63, the energy suppliers compute only the final monthly bill per customer, but not the individual meter-
ing data per time slot. Sun et al64 hid household electricity load by using the thermal appliances and energy units. They
propose an opportunistic use of household energy storage units like EVs and heating, ventilating, and air condition-
ing systems to reduce or eliminate the reliance on local rechargeable batteries for load hiding. Using an intermediate
position between the service provider/aggregator and consumers is used to blur the energy consumption/generation
data.

Azar et al65 proposed a virtual power plant as an intermediator on behalf of a group of neighborhood prosumers to
negotiate with the aggregator, where no private information of the prosumers is shared. Employing blockchain technol-
ogy in the network of prosumers and the virtual plant addresses the possible trust issues. Laszka et al42 introduced an
intermediate mixing service, called privacy-preserving energy transactions (PETra) based on blockchain to anonymize
all transactions. In this model, the ownership of the assets is obfuscated among a group of anonymous addresses. The
mixing service prevents tracing assets back to their owners by mixing together multiple incoming and outgoing transfers.
Although mixing the connections between the prosumers and the anonymous addresses helps to provide a transaction
anonymity service, it cannot provide asset anonymity. Each anonymous address must be linked to a feeder to perform
feeder safety checks in the blockchain-based smart contract.66 Due to this linkage, the feeders’ identities are not hidden
and can be used by linking attacks to identify blockchain members.

4.3 Route hiding

In a hidden route or anonymous connection, the communicating parties are able to exchange transactions without
revealing identities. To make it difficult for observers to identify communicating parties from connection information,
anonymous connection schemes, such as Onion routing67 or Garlic routing,68 encapsulate identifying information in
multiple layers of encryption and pass it as data through the connection. In an Onion routing network (eg, Tor network),
each Onion router can only identify the previous and next hop along a route. Data passed along an anonymous connection
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appears differently at each onion router, so data cannot be tracked en route.67 In Garlic routing, which is a version of
Onion routing, several messages along with their delivery instructions are encapsulated into a single message.68

Route hiding solutions in blockchain are performed in the communication layer. Since the intermediate connection
nodes know only the immediately preceding and following nodes, we achieve the anonymity of the original sender and the
message.[18 Although anonymizing routing information hides connection routes, it is not sufficient for fully anonymous
trading. Onion routing is vulnerable to traffic correlation attacks, where an adversary monitors a user’s traffic as it enters
and leaves the anonymity network to link the sender and receiver of the communication.12 Biryukov et al69 showed how
using Bitcoin over Tor network exposes the user to MitM attacks in which an attacker controls which Bitcoin blocks and
transactions the user is aware of. By setting an “address cookie” on user’s machine, the attacker can correlate the same
user across different sessions, even if he/she uses the Tor network. Furthermore, the MitM attacker exploits a Bitcoin
built-in reputation based DoS protection to force specific Bitcoin peers to ban Tor Exit nodes of her choice. It leads to
numerous attacks, such as the traffic correlation attack and correlating different Bitcoin addresses.

To achieve anonymous trading, Bergquist et al70 exploited the features of Garlic routing and CryptoNote71 ring sig-
nature. The provided anonymous connection prevents data identification and the ring signature helps to make the
transactions untraceable. Despite anonymizing the transactions chain on the network communication and on the dis-
tributed ledger, it cannot provide a full anonymous trading. It can be proven that a bid or an ask has been responded to and
that a transaction has taken place.70 The routing scheme introduced in Reference 72 is a chessboard-clustering scheme
for heterogeneous sensor networks. The routing consists of intra-cluster routing, between sensors and the cluster head,
and inter-cluster routing, between cluster head sensors. This routing scheme was used by Du et al73 for key management
in his sensor network. In a garlic routing-based manner, keys are shared between the neighbor sensors that may commu-
nicate with each other. Therefore, each sensor can identify its communication neighbor (c-neighbor) as the next hop in
the route. This prevents the attacker tracing the transactions based on the routing messages.

4.4 Key management

To identify and authenticate the members participating in a blockchain, the public key infrastructure (PKI) is used74 and
members’ IDs are used as their public keys. In the network of IoT devices with limited storage (eg, a sensor network),
key distribution is an issue. Du et al73 proposed a key management method for sensor networks, in which a sensor node
does not need to share keys with all neighbors. Due to the small key size and low computational overhead of elliptic
curve cryptography (ECC), this public-key cryptography was utilized in the sensor networks. Sharing keys with neighbor
provides an ECC-based group signature in which a transaction’s sender cannot be distinguished among other members
of that group.18 To preserve an IoT user’s privacy in access control, Ouaddah et al75 introduced FairAccess based on
cryptocurrency blockchain mechanisms. A network of policy enforcement points (PEP) manages the protected resources.
Blockchain is used to guarantee that policies are enforced by all interacting entities and detect any token reuse. To access
a resource, an IoT device needs to obtain an access grant issued by the resource owner. Smart contracts are created for
access control for each resource and requester pair.

Ma et al76 introduced a blockchain-based key management scheme to preserve users’ privacy in IoT systems that keep
users’ key information (eg, smart home). The key management operations of a hierarchical access control are stored in
blockchains that act as public ledgers. In the presented IoT-involved blockchain, each blockchain is operated by a security
access manager (SAM) in a fog layer as the full node. Each SAM is connected with several IoT devices and maintains
the key information blockchain of its domain. The IoT devices act as lightweight nodes to process only self-correlative
key information transactions. SAM acts as a CA to authorize access queries in a public and decentralized manner. In a
cloud layer, SAMs are connected to each other to synchronize the public ledger. The multi-blockchains stored in the cloud
support cross-domain interaction between side blockchains.

4.5 Zero-knowledge proof

In the zero-knowledge proofs, a prover demonstrates possession of knowledge without revealing any computational
information.77,78 Based on zero-knowledge proofs, Hardjono et al79 introduced ChainAnchor, to anonymously register
IoT device commissioning and decommissioning data in the blockchain. This architecture uses the zero-knowledge proof
protocol of enhanced privacy ID (EPID)80 to allow a device to prove to a provenance verifier (and to the device owner) that
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the device has the correct provenance and is coming from a given manufacturer. On the blockchain, the device is recogniz-
able only through its transaction public key. To provide transactional privacy for a public blockchain, in which the entire
sequence of actions taken in a smart contract are propagated and publicly recorded on the blockchain, Hawk81 exploits
zero-knowledge proofs. The transaction information in the blockchain is encrypted and based on the zero-knowledge
proofs of the correctness of contract execution and money conservation are enforced. Hawk execution needs a manager,
who can see the users’ inputs. The manager computes the Hawk program, based on the transaction parties’ data and cur-
rency, and constructs new private coins to be paid to each recipient. The new private coins and zero-knowledge proofs of
their well-formedness are submitted to the blockchain by the manager. A compiler is used to compile the program using
a cryptographic protocol between the blockchain and the users. Requiring a trusted manager to not disclose users’ private
data opens its own privacy issues.

To address the traceability issue with Bitcoin, Zerocoin82 was introduced to break the link between individual Bit-
coin transactions. To anonymously prove ownership, a non-interactive zero-knowledge signature is used instead of a
public-key based signature. Coins are authenticated, by proving in zero-knowledge, that they belong to a public list of
valid coins in the blockchain.83 Despite transaction anonymity, the amount or other data about the transactions are not
hidden in Zerocoin. To address those issues, Ben-Sasson et al83 introduced Zerocash, a ledger-based currency constructed
on decentralized anonymous payment schemes and leveraged zero-knowledge proofs. In addition to anonymous trans-
actions, the transaction amounts and the values of coins held by users are hidden in Zerocash. A user can prove that
she/he paid any taxes due on the transactions without revealing those transactions, their amounts, or even the amount of
taxes paid. In Provisions,84 the zero-knowledge proof is used to prove ownership and solvency in Bitcoin exchange. Using
zero-knowledge proofs, an exchange proves that its total assets are equal to its liabilities without revealing which public
keys it owns.

However, the computational and memory resources required for zero-knowledge proofs limits their applications, espe-
cially for IoT blockchains. For instance, redeeming Zerocoins requires double-discrete-logarithm proofs of knowledge
and are longer than 45 kB and require 450 ms for verification.83

4.6 Off/on-chain mechanism

In IoT ecosystems, M2M transactions between IoT devices or P2P connections between IoT users are the norm.85 Register-
ing all M2M micro-transactions in the blockchain not only compromises IoT user’s privacy but also increases transaction
fees. Off-chain interaction solutions are used to address the privacy issue with the blockchain by performing several P2P
transactions between two parties without writing them into blockchain. To improve the speed of the transaction process-
ing and save transaction fees, the off-chain mechanism enables deploying only the on-chain process onto the blockchain.86

This conserves the resources of the blockchain and hides the sensitive information involved in the off-chain transactions
from the public.18,87 In the distributed electricity trading system introduced by Luo et al,88 a multi-agent negotiation sys-
tem runs between prosumers in the off-chain for contract negotiation. For each negotiated contract, a corresponding
ledger entry is made to securely settle the contracts in the blockchain. The contract and ledger are stored separately. To
detect any malicious manipulation, a verification mechanism is introduced to inspect any inconsistencies between the
contract and ledger.

To preserve users’ privacy, Zyskind et al89 stored personal data in off-chain storage. Two types of transactions are
proposed, namely, for access control and data storing/retrieving. The hash value of the data is retained in the blockchain
to point to the data in the off-chain storage. To implement the off-chain key-value store, a distributed hashtable (DHT) is
maintained by a network of nodes, separated from the blockchain network. To ensure availability, data are randomized
and replicated across the nodes. The user can change the granted permissions at any time by issuing an access transaction
with a new set of permissions. Erdin et al90 proposed using an off-chain payment system for EV charging stations by
building a payment network in parallel to the main ledger, with permission and signatures to minimize transaction fees
and address the privacy exposure problem. Khalil et al91 extend the payment channel to a set of users in a payment
channel network. As payment networks, these subnetworks allow payments to be made between parties that are not
simultaneously connected by a payment channel.

Although users in the off-chain system normally remain (pseudo) anonymous, it is possible to store service profiles
on the blockchain and verify their identity.89 Despite the benefits of the off-chain mechanism to preserve privacy and
decrease transaction fees (eg, in Bitcoin), it has its limitations, namely limited channel capacity, data privacy in payment
transaction routing, and the cost of opening and closing channels.29,90
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4.7 Sidechain mechanism

Sidechain mechanisms allow ledger assets (eg, Bitcoins) to be safely transferred from the main chain to other blockchains,
and that can be securely transferred back.92 Back et al93 proposed pegged sidechains, with interoperable blockchains,
to allow transferring ledger assets between multiple blockchains. To localize a disruption to a sidechain on which it
occurs, sidechains should be independent, with users providing any necessary data from other chains. When moving
assets from one blockchain to another, a transaction is created on the first blockchain locking the assets, then a transaction
is created on the destination blockchain whose inputs contain a cryptographic proof that the lock was done correctly. In
general, the main chain does not know the existence of the sidechain, but the sidechain must know the existence of the
main chain.92

In a modular consortium IoT network, introduced by Ali et al,94 IoT data privacy is preserved by grouping devices
into sidechains, which are private blockchains. The sidechains are modularly connected to a decentralized P2P consor-
tium network. Each sidechain includes a validator to manage its private blockchain. The consortium’s validators run
a blockchain to log any incoming access requests for user’s IoT data and its access control. Although users’ privacy is
preserved by separating the logging responsibilities of the sidechains and those of the consortium blockchain, depen-
dency on intermediate controllers opens other challenges (eg, single point of compromising). Cross-chain mechanisms
used to trustfully transfer information between different blockchains mainly rely on techniques such as notary schemes,
sidechains, hash-locking, and distributed private key control.92 To have secure IoT data management, Jiang et al95 pro-
posed a cross-chain framework to connect blockchains. A consortium blockchain is used as a control station in an access
model and connects with sidechains of IoT devices through the notaries. IOTA Tangle†† is used as the backbone of the
interconnected IoT devices. IoT devices are connected to the consortium blockchain through notary nodes and IoT devices
for a single-use case are grouped into sub-Tangles. Incoming access to any data is recording and access control mecha-
nism is performed on these requests using the consortium blockchain. The notary network confirms each cross-chain
transaction by the voting mechanism.

4.8 Subnetwork blockchain

Based on the sidechain mechanism, in a subnetwork mechanism, a main blockchain has some subnetwork blockchains
which are connected together by interconnection positions. The main idea of a subnetwork blockchain is to handle the
P2P transactions of a group of IoT users in a subnetwork blockchain. The subnetwork blockchain is independent of
the main blockchain and the interconnection node exchanges transactions between them. The interconnection node
needs to simultaneously join both main and subnetwork blockchains. To preserve users’ privacy, the interconnection node
prevents any private information in the subnetwork leaking to the main blockchain. Based on the current events in the
subnetwork blockchain, new transactions are created and appended to the main blockchain by the interconnection node.
Since a subnetwork blockchain is a private blockchain, it is limited to its authorized members, which can store the private
ledger.96 A recovery mechanism is needed to prevent the interconnection node doing any fraud or data manipulation
when it transfers data to the main blockchain.

Based on the subnetwork mechanism, Firoozjaei et al97 introduced Hy-Bridge, a hybrid blockchain to handle P2P
transactions of IoT users in subnet blockchains. Interconnection nodes, called bridges, connect the main blockchain and
its subnetwork(s). To prevent IoT users’ private data leaking to the main blockchain, bridges perform an anonymiza-
tion protection based on k-anonymity. The concept of k-anonymity was proposed by Samarati and Sweeney in Reference
98. By generalizing and data suppressing, k-anonymity guarantees that in a set of k objects with a similarity, the target
object is indistinguishable from the other k− 1 objects.99-101 All P2P transactions generated in subnetwork blockchains
are forwarded to the main blockchain after anonymizing by the bridge(s). The bridges manage the transactions in two
different blockchains to avoid user profiling and user identification. Based on Hy-Bridge, EVChain29 was introduced to pri-
vately share charging credits in the EV charging market. EVChain is a hybrid blockchain framework consisting of a main
blockchain for billing and payment and one or more subnetwork blockchains for credit-sharing. It allows credit-sharing
within a group of EV owners and preserves an individual group member’s privacy with k-anonymity protection. A local
block with a credit header is used to handle user-to-user (U2U) transactions of the credit-sharing group. The parameters
of the credit header enable the members of the credit-sharing group to share the charging credit and manage it separately
in the subnetwork blockchain with negotiated policies. All transactions in the credit-sharing group are anonymized by
the bridge and no private data is leaked to the main blockchain.



12 of 28 FIROOZJAEI et al.

4.9 Partner matching

The stable matching problem is to match individuals from different sides of a bipartite graph.102 The matching model was
introduced by Gale and Shapley.103 An individual (eg, buyer) gives a list ordered by preference of all the individuals (eg,
sellers), from other groups, it wants to match, to create a preferred list or ranked list. To achieve stable matches, a buyer
proposes to match himself/herself to his/her preferred seller. A seller who receives multiple proposals chooses greedily
his/her favorite buyer and rejects all others. The rejected buyers propose to their next choice in the next stages and again
sellers choose their most preferred option.104

Private information is disclosed or shared when partners are matched. For instance, in the location privacy method
introduced by Yucel et al,102 the location information of an electric supplier, which is encrypted, will be disclosed to an
EV owner if they match. It exploits the homomorphic operation based on Pascal Paillier cryptosystem105 between EVs
and suppliers. When suppliers receive a charging request with an encrypted location, sent from an EV, they perform the
necessary homomorphic operations (using an EVs homomorphic public key and their location information) to calculate
the encrypted distance. In response, the EV receives the encrypted distance information sent by the vicinity suppliers and
decrypts them to obtain the actual distance and forms a preference list of suppliers in the ascending order of distance.
Eventually, based on the preference lists the matching is achieved by the distributed stable matching. The EV offers to its
first preference of supplier in the list and the supplier accepts it if it has that EV in its list. Nunna et al106 used symmetrical
assignment problem based on naive auction algorithm to match the buyers and sellers in the energy market. The naive
auction algorithm runs in rounds and only one buyer bids on the desired object in each round. The objective of assignment
problem is to find an assignment (a set of buyer-object pairs) that maximizes total benefit.

To provide privacy and security services for IoT-based transactive microgrids, Laszka et al66 introduced an auction
and matching mechanism in a distributed setting. Each prosumer generates an anonymous address and uses it when
interacting with the blockchain (eg, posting offers). An energy asset is defined to show the permission to sell or buy a
specific amount of energy in a specific set of time intervals. Each prosumer can ask the distribution system operator
(DSO) to transfer assets to an anonymous address. By approving the permission (eg, safety check and linking between
anonymous address and a correct feeder), this transfer is recorded on the blockchain by the DSO. When the participant
posts an offer from the anonymous address, the smart contract can check whether the address has the assets required for
the offer. Relying on the DSO, that can link anonymous address to the participant is the model’s privacy Achilles’ heel.

4.10 Ring signature

Normally, in group signatures any member can anonymously sign a message on behalf of the group and only the group
managers/issuers are able to add users and trace or revoke users.107 The centralized nature of the group signature makes
it useful for a cooperative network, in which the group manager is a trusted party. In the ring signature,108 which is
signer-ambiguous, there is no pre-arranged group of users and no way to distribute specialized keys. To produce a ring
signature, the actual signer declares an arbitrary set of possible signers that includes himself, and computes the signature
entirely by himself using only his secret key and the others’ public keys. The produced signature can be publicly verified
to be signed by one of the group members. The group formation and the signature generation are both spontaneous,
meaning that no participation or even knowledge of the other r − 1 members are needed.109 In fact, the security property
of a ring signature is that it should be computationally infeasible to determine which of the group members’ keys was used
to produce the signature. Exploiting the public key of a standard signature scheme (eg, RSA), the produced anonymity
guarantees that in a set of signatures of r members the actual signer is not distinguishable from the other r − 1 members.
The larger the value of r is, the greater is the implied privacy, as the anonymous objects are identifiable with the probability
greater than 1/r.

97

Manlina et al107 proposed lightweight ring signatures to provide anonymous transactions in a constrained environ-
ment such as an IoT network. By shuffling the public keys in the ring set, the authors tried to remove any possibility of
identifying the actual signer. For users’ anonymity and authenticity in healthcare IoT networks, the lightweight ring sig-
nature is exploited in Reference 110 for a blockchain of healthcare data. Monero‡‡ digital currency uses a ring signature
to obfuscate a transaction’s origin. In Monero’s ring signature, a user’s account keys are used with a number of public keys
(known as outputs) pulled from the blockchain using a triangular distribution method. To form possible signer partici-
pants, past outputs are used multiple times. Since all signers are equal, it is difficult for an attacker to detect individuals.
To prevent transaction linkability, users are able to obscure transaction graph and include chaff coins, called “mixins”,
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with the actual coins they spend. Miller et al111 identified weaknesses in Monero’s mixin selection policy, and showed
the risk of linkability. A significant fraction (62%) of Monero transactions with one or more mixins are deducible and
therefore can be conclusively linked.111

Despite the anonymity protection for the signer, there is no guaranty for unlinkability of the signature and the
receiver.5 Liu et al109 showed the linkability of the ring signature. Although the signer remains anonymous, two signa-
tures signed by the same actual signer can be identified. They showed how two signatures with the same public key list
are linked if they are generated using the same private key. Basically, the linkable ring signature112-114 is used in unforce-
ability required applications (eg, e-voting). In a linkable ring signature, each message is signed not only with respect to
a list of ring members, but also with respect to an issue/tag. If a user signs the same message twice with respect to the
same list of ring members and the same issue label, then the two signed messages can be determined to have come from
the same signer.115 Due to the linking property, the linking ring signature provides a restricted anonymity feature, which
makes fully privacy-preserving impossible.116 To prevent any insider attacks, Franklin et al115 introduced unique ring sig-
nature, in which signers in a ring cannot produce signatures for any messages with more unique identifiers than the size
of the ring.

4.11 Multisignature

Unlike ring signatures, multi-signatures have a trusted third party who cooperates in signing to ensure transaction
validity.18 In multi-signature wallets introduced by Zhao et al,86 an exchange, as a trusted third party, is authorized by the
participants in distributed energy trading. A set number of tokens, signed by the buyer and the exchange, are transferred
from the blockchain account to the multi-signature wallets. The order contracts which contain buyers’ order information
and sellers’ information are sent to the exchange. According to the kind of order and delivery time, the exchange classi-
fies the submitted orders. After the delivery period, the electric data will be transferred to the settlement contract. The
contract is executed and the tokens will be transferred from the multi-signature wallet of the buyer to the multi-signature
wallet of the seller and the exchange account.

In the distributed contracts, multiple independent parties are required to sign a transaction to protect against theft. In
this multi-signature transaction, a minimum m of n keys must sign a transaction before tokens can be spend.117 To preserve
privacy and secure transactions without reliance on trusted third parties, Aitzhan et al117 adapted a proof-of-concept for
a decentralized energy trading system based on multi-signatures. All nodes collectively act as a replacement for a trusted
party, and vote on the validity of transaction by traversing through the publicly available history of the distributed chain
of transactions. For anonymous messaging, users are forced to generate new messaging addresses for each new trade
negotiation.

4.12 Secret sharing

Generating ephemeral keys based on secrets shared between the involved parties helps secure data access or exchange
over a public network.118 As a secure key exchange method, Diffie-Hellman (DH) key exchange is used to generate
ephemeral cryptographic keys. For instance, DH key exchange is used in Reference 27 to share a key between the miner
and a new IoT device to add the IoT device to the smart home. Guo et al119 proposed an attribute-based signature
scheme with multiple authorities, in which computational bilinear DH is used to share the secret pseudorandom func-
tion seeds among them. A patient endorses a message according to the attribute and no information is disclosed other
than the evidence that he/she has attested. Employing computation bilinear DH provides prefect privacy as well as being
unforgeable under a selective predict attack. In CryptoNote71 blockchain, DH exchange is used to get a shared secret
between sender and receiver to provide unconditional unlinkable payments. Each CryptoNote output’s destination is
a public key, derived from a recipient’s address and a sender’s random data. By DH exchange, the sender and receiver
get the shared secret. A one-time destination key is computed based on the shared secret. Upon receiving a transac-
tion, a user scans all output keys and checks if he can recover the corresponding secret key. He succeeds if and only
if that particular output was sent to his address. Creating a large number of transactions on the blockchain is a disad-
vantage of this solution, which is a trade-off between privacy and capacity. Furthermore, since the CryptoNote coin’s
receiver needs to sweep all transactions when it wants to send it, an adversary can track which keys go together in some
manner.120
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In the blockchain-based access management introduced in Reference 121, an IoT user can delegate the access right
of an IoT device to another user. The anonymous feature of blockchain is used to protect users’ sensitive information
at a public blockchain. Three types of public keys, namely, a user’s primary key, a one-time sub address, and a domain
address, are used to exchange anonymous transactions. Each IoT user chooses a secret, which is also shared with his/her
IoT device. The hidden value and sensitive information are encrypted with the one-time secret shared with the receiver
and attached to the transaction.

5 EVALUATION FRAMEWORK

To evaluate the quality of the privacy provided by the reviewed solutions, we propose an evaluation framework. The
framework needs a set of criteria that lends credibility to the results and simplifies the evaluation process.122 We define
evaluation criteria for two groups of privacy factors. The first group enhances the privacy of users and their data. The
second group are risks or attack vectors to which the solution is vulnerable.

5.1 Privacy features

Privacy features are factors which determine the degree of protection. Table 1 shows the privacy features introduced for
our privacy ranking. They help conceal IoT user’s private data, shared in the blockchain ledger, and prevent an adversary
(insider or outsider) from access it. These features fall into three groups, namely, user anonymity, asset anonymity, and
transaction privacy. There are 12 criteria for privacy features. Depending on the protection provided and effectiveness, we
rank the individual criterion of the privacy features on a scale of one to three. A weight of one indicates that a criterion is
useful but not very effective. The weights of two and three indicate the effectiveness of a criterion to preserve IoT user’s
privacy, respectively, in medium level and high level.

User anonymity can be accomplished by using ephemeral ID, pseudonymous ID, or hiding a user’s ID in an anonymity
group. The asset anonymity feature includes two criteria of device ID hiding and ownership hiding. It addresses the pri-
vacy issues of IoT device profiling, targeted advertisement, and criminal abuse, which are common IoT device-centric
privacy issues. The transaction privacy feature includes the criteria of data confidentiality (eg, data encryption, data obfus-
cation, private data separation, and data suppression), transaction untraceability, transaction anonymity, and anonymous
trading. These criteria are used to conceal an IoT user’s private data or prevent attackers tracing the transactions. For
instance, anonymous trading guarantees that the adversary cannot find information about a transaction’s data (eg, money
amount) or its receiver.

As shown in Table 1, we scale each individual criterion based on our weighting model. To evaluate the
privacy-preserving capabilities, we consider all protection criteria provided by a protection solution. To this end, we

Privacy feature Criterion Weight

User anonymity Pseudonymous ID 2

Ephemeral ID 3

Anonymity group 3

Asset anonymity Device un-identifying 3

Ownership un-identifying 2

Transaction privacy Confidentiality—data encryption 3

Confidentiality—data obfuscation/generalization 2

Confidentiality—private data separation 2

Confidentiality—data suppression 2

Transaction untraceability 3

Transaction anonymity 2

Anonymous trading 1

T A B L E 1 Privacy features
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assume that the criteria of the privacy features are not mutually exclusive. Therefore, there is no limitation and a protec-
tion solution can provide all privacy features’ criteria to preserve IoT user’s privacy. The weighting vector W⃗f represents
the weights of these 12 criteria of the privacy features, where:

W⃗f = (w1,w2, … ,w12) = (2,3,3,3,2,3,2,2,2,3,2,1), (1)

where wi represents the weight of the ith criterion of the privacy features. Maximum privacy is defined as the maximum
protection, when a protection solution offers all privacy features and achieves the total scale of:

Maximum privacy =
12∑

i=1
wi = 28 (2)

In the maximum privacy protection, a protection solution provides a full privacy over all aspects of user-centric issues
and device-centric privacy issues.

5.2 Privacy risks

We classify the factors which can be used to compromise an IoT user’s privacy (eg, user identifying or chain reaction123)
as the privacy risks. They can be residential privacy threats, that could not be covered by a protection solution or the side
effects of the privacy-preserving, which are provided unwillingly. For instance, the risk of third party dependency is a
side effect of a solution which depends on a trusted third party (TTP) to privately handle transactions (eg, multi-signature
solution). These factors can be exploited by an attacker to launch attacks like linking attacks or user profiling. As shown
in Table 2, there are four groups of privacy risks, namely, linkability, third party dependency, insider adversary, and
performance issues.

Linkability risk is the potential to correlate data from different sources (eg, transactions).124 It includes traffic correla-
tion, address/ID correlation, and IoT device linkability. If an attacker can monitor traffic, he/she can analyze anonymous
paths (eg, Tor) and identify the parties to a communication.12 In a device-to-identity linking attack, the information about
IoT devices are exploited to infer links between devices and user’s.11 Dependency on a third party, such as a system oper-
ator, a trusted third party (TTP), and an intermediate controller, to preserve IoT users’ privacy in the blockchain is a risk
as they may not keep their fiducial responsibility. Private data leakage and misusing are possible by the adversarial insid-
ers. Data leakage, signature/token reuse, and transaction misrouting are the criteria of the insider adversary risk. Utility
and performance conditions are important to evaluate the solutions. Practically, higher privacy imposes heavy compu-
tation, execution delay, and resource consumption, which leads to lower utility. We consider the criteria of bandwidth

T A B L E 2 Privacy risks Privacy risk Criterion Weight

Linkability Traffic correlation 1

Address/ID correlation 1

Device linkability 1

Third party dependency System operator (distributor/manager) 1

Trusted third party (TTP) 1

Intermediate controller 1

Insider adversary Data leakage 1

Signature/token reuse 1

Transaction misrouting 1

Performance Capacity issue (bandwidth) 1

Memory issue (large number of transactions) 1

Computational burden 1
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(eg, capacity issue), memory (eg, large number of transactions), and the computational requirement to evaluate the
performance of the solutions.

As shown in Table 2, we consider 12 criteria for the privacy risks. We consider each criterion to be of equal effect and
give a weight of one to all of them. The weighting vector V⃗r represents the weights of these criteria, where:

V⃗r = (v1, v2, … , v12) = (1,1,1,1,1,1,1,1,1,1,1,1), (3)

where vi represents the weight of the ith criterion of the privacy risks. Maximum risk is defined as the maximum privacy
risk, when a protection solution leaves all introduced privacy risks and has the total risk scale of:

Maximum risk =
12∑

i=1
vi = 12 (4)

Maximum risk happens when a protection solution provides all side effects that leads to the maximum risk of privacy
violation.

5.3 Privacy rank

To obtain objective results, we devise an evaluation scheme for ranking the privacy-preserving solutions. Based on the
technique used, each solution offers privacy features and has some risks (residential threats or side effects). The privacy
features of a solution is expressed as a privacy feature vector, P⃗f , where:

P⃗f = (f1, f2, … , f12), (5)

where f i is 1 or 0 and shows whether the protection solution satisfies the ith criterion of the privacy features (f i = 1) or
not (f i = 0). Similarly, the privacy risks of a solution is expressed as a privacy risk vector, P⃗r, where:

P⃗r = (r1, r2, … , r12), (6)

where ri is 1 or 0 and shows whether the solution has the ith criterion of the privacy risks (ri = 1) or not (ri = 0). In practice,
the privacy risks have different feasibilities based on the ease of exploiting or their abundances. In this framework, we
consider all privacy risks’ criteria equal and indicate their feasibilities in the binary variables (0 or 1).

The resultant of the provided privacy features and the remained privacy risks shows the overall privacy-preserving
provided by a protection solution. We call it the privacy resultant, which is calculated as follows:

Privacy resultant = P⃗f ⋅ W⃗f − P⃗r.V⃗r =
12∑

i=1
fi × wi −

12∑

j=1
rj × vj. (7)

Practically a solution cannot provide all privacy features and the maximum privacy protection is not feasible. Similarly,
the maximum risk cannot be assigned to a privacy-preserving solution. Based on the introduced indexes of maximum
privacy and maximum risk in 5.1 and 5.2, the privacy resultant is a value between −12 and 28. We have the minimum
privacy resultant (−12) when a solution leaves all privacy risks and has no privacy feature. In a similar fashion, the
maximum privacy resultant (28) is achieved when a solution offers all privacy features with no privacy risk. It is worth
to note that, these values are based on the criteria introduced in Tables 1 and 2 and will be changed if other criterion
weighing scales are used.

We introduce the privacy rank, to represent the numeric value associated with each evaluated privacy-preserving
solution. The privacy rank of a solution is the normalized value of its privacy resultant. To this end, we normalize the
values of privacy resultant and transfer them into a decimal range between 0 and 1 by the min-max normalization. For a
given set of values {vk}, k = 1, 2, … , n, the min-max normalized values {v′k} are given by125:

v′k = vk − min
max −min

, (8)
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T A B L E 3 Rating model for privacy rank Rating scale Privacy rank (PR)

Poor 0≤PR< 0.2

Fair 0.2≤PR< 0.4

Good 0.4≤PR< 0.6

Very good 0.6≤PR< 0.8

Excellent 0.8≤PR≤ 1

where max and min are the maximum and minimum values from the given set of values {vk}, respectively. In our eval-
uation model, the maximum and minimum values of the privacy resultant are −12 and 28, respectively. Therefore, the
privacy rank is:

Privacy rank =
(Privacy resultant) − (−12)

28 − (−12)
=

(P⃗f .W⃗f − P⃗r.V⃗r) + 12
40

(9)

The value of privacy rank shows the quality of the privacy-preserving provided by a solution. A larger privacy rank
indicates better protection and small rank shows the lower quality of protection. Therefore, the privacy rank with the
value of 0 represents no privacy and the privacy rank of the value of 1 indicates full privacy.

We define a model to rate the scales of the privacy rank. Table 3 shows our rating model in the range between 0 and 1.
We define five rating scales, namely, poor, fair, good, very good, and excellent. A privacy rank smaller than 0.2 is rated as
poor rank. Privacy ranks in the range of [0.2; 0.4), [0.4; 0.6), and [0.6; 0.8) are respectively rated fair, good, and very good.
The excellent rate is assigned to a privacy rank between or equal to 0.8 and 1. The lowest privacy-preserving is offered by
a poor solution, which is usually vulnerable against most privacy threats, such as linking attacks. Although the fair rated
solutions provide the basic privacy protection, they suffer from privacy risks, which dispose the private information. A
good solution offers most effective protection criteria (eg, untraceability). Our evaluation shows that a very good solution
should provide anonymity and confidentiality privacy features (eg, data encryption and untraceability) and be resistant
against privacy risks. An excellent privacy-preserving solution has no privacy risk and provides a full anonymous trading
with all features of privacy.

6 EVALUATION RESULTS

The evaluation results of the reviewed privacy-preserving solutions are shown in Tables 4 and 5. Table 4 shows the
criteria of the privacy features, the weight of each item (extracted from the weighting vector of W⃗f ), and the possi-
bility of being covered by the solutions. Similarly, Table 5 indicates the privacy risks and their criteria, the weight
of each criterion (extracted from the weighting vector of V⃗r), and the possibility for a solution being vulnerable
with the risk criterion. In these tables, the checkmark in front of each criterion indicates that the corresponding
privacy-preserving solution provides that criterion of privacy feature or is suffering from the indicated criterion of the
privacy risk.

As shown in Table 4, user anonymity is the most supported privacy feature. The pseudonymous ID criterion,
which is a basic blockchain feature, is offered by all reviewed solutions. In comparison, the ephemeral ID is only
provided by ephemeral pseudonym, multi-signature, and secret sharing solutions to make IoT user anonymous.
Device un-identifying is provided only by the zero-knowledge solution. In this regard, zero-knowledge provides the
most privacy features and covers seven criteria, the most among all reviewed solutions. Data hiding and subnet-
work solutions cover six criteria. In spite of providing different criteria, the solutions of off/on-chain, sidechain,
partner matching, ring signature, and secret sharing support five criteria. While ephemeral pseudonym, route hid-
ing, and multi-signature cover four criteria, key management has the lowest criterion coverage. Although the number
of criterion covered by a preserving solution is important, the weight of the criterion, which indicates its effective-
ness, is a critical factor to calculate the privacy rank of a solution. For instance, data encryption criterion, which
is weighted with three, is more effective than anonymous trading criterion with weight of one, in privacy rank
calculation.
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Privacy-preserving solution Privacy feature vector ( ⃗Pf ) Privacy risk vector ( ⃗Pr)

Ephemeral pseudonym (1,1,0,0,1,0,0,0,0,0,0,1) (1,1,0,0,0,0,0,0,0,0,0,1)

Data hiding (1,0,0,0,1,0,1,0,0,1,1,1) (0,1,1,0,0,1,0,0,0,0,0,0)

Route hiding (1,0,0,0,1,0,0,0,0,1,1,0) (1,1,0,0,0,0,0,0,0,0,0,0)

Key management (1,0,1,0,0,0,0,0,0,0,0,0) (0,0,0,0,0,1,1,0,0,0,0,0)

Zero-knowledge (1,0,0,1,0,1,1,0,0,1,1,1) (0,0,0,0,1,0,0,0,0,1,0,1)

Off/on-chain (1,0,1,0,0,0,0,1,1,0,0,1) (1,0,0,0,0,0,0,0,1,1,0,0)

Sidechain (1,0,1,0,0,0,0,1,1,0,0,1) (1,0,0,0,0,1,1,0,0,0,0,0)

Subnetwork (1,0,1,0,0,0,1,1,1,0,0,1) (1,0,0,0,1,0,1,0,0,0,0,0)

Partner matching (1,0,0,0,1,1,0,0,1,0,0,1) (0,1,0,1,0,0,0,0,0,0,1,0)

Ring signature (1,0,1,0,1,0,0,0,0,1,1,0) (1,1,0,0,0,0,0,1,0,0,0,0)

Multisignature (1,1,0,0,0,0,0,0,1,0,0,1) (0,1,0,0,1,0,0,1,1,0,0,0)

Secret sharing (1,1,0,0,0,1,0,0,0,0,1,1) (0,0,1,0,0,0,0,0,0,0,1,1)

T A B L E 6 Privacy feature
vector and privacy risk vector
for each privacy-preserving
solution

Table 5 shows that the linkability risk is the most common vulnerability for the reviewed solutions. Most of them
are vulnerable to correlation attacks. Solutions that use encryption techniques or exchange a huge number of transac-
tions (eg, zero-knowledge and secret sharing) suffer performance issues. Our evaluation shows that route hiding and key
management have the lowest privacy risk and the multi-signature solution has the highest privacy risk.

As mentioned before, we assign a weight for each criterion of the privacy features and the privacy risks based
on our weighting scheme. This weighting is expressed in two weight vectors of W⃗f and V⃗r, which are represented by
Equations (10) and (11).

W⃗f = (2,3,3,3,2,3,2,2,2,3,2,1) (10)

V⃗r = (1,1,1,1,1,1,1,1,1,1,1,1) (11)

The criteria of the privacy features are ranked on a weight scale of one to three. Low, medium, and high effective criteria
of privacy features are respectively weighted one, two, and three. We consider a same weight scale for each individual
criterion of privacy risks and each one is ranked the weight of one. It is worth noting that, the introduced weighing scales
can be changed and rearranged for different evaluation purposes. The weight of individual criterion can be set based on
its priority and effect on the related evaluation model.

Table 6 represents the privacy feature vector (P⃗f ) and the privacy risk vector (P⃗r) for the reviewed
privacy-preserving solutions. P⃗f vector is extracted from Table 4 and indicates the privacy features offered by a
privacy-preserving solution. P⃗r shows the privacy risks that threaten a privacy-preserving solution and is extracted from
Table 5.

6.1 Privacy-preserving analysis

Different privacy features and risks are created in each class due to the privacy priority and the techniques used.
Anonymity is the main priority of the solutions in the obfuscation class. In this class of protection, the pseudonymous
and ephemeral IDs are the major techniques used to anonymize a user. Furthermore, transaction anonymity is achieved
by obscuring the routing data. Therefore, obfuscation class solutions are not suitable to protect the user’s data. Although
both blockchain implementation models for IoT, namely, BaaS and IoT-involved blockchains, can benefit anonymity
service provided by these solutions, device-centric privacy protection (eg, IoT device anonymity) is better provided for
IoT-involved blockchain model. Linkability is the main vulnerability for these solutions and threatens their services. An
attacker is able to uncover hidden information (eg, user identification) by correlation by prolong traffic monitoring. Fully
anonymous trading is not achievable by solutions in the obfuscation class.
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Data encryption and digital signatures are commonly used by the privacy-preserving solutions in the cryptographic
class. Data confidentiality is provided by encrypting the transaction data. Zero-knowledge solutions provide transaction
untraceability and data confidentiality in which no private data is revealed. Despite these features, zero-knowledge proof
is not proper for user anonymity purposes. In some cases (eg, Hawk81), a trusted manager is needed for private trans-
actions and blockchain updates. Extreme computation and high network use limit zero-knowledge solutions for BaaS
applications. Key management solutions use key sharing policies to authenticate and identify IoT users. It is a good choice
for IoT-involved blockchain applications due to its simplicity.

In the ring signature solutions, the user is anonymous because the transaction’s origin is obscured. It is difficult to trace
transactions originated from a group of homogeneous signers. The number of signing ring members and their relationship
directly affect the protection efficiency. Depends on the blockchain implementation model, we have different privacy
features achieved by these solutions. For instance, user anonymity is possible for BaaS applications and IoT devices are
anonymous in IoT-involved blockchain applications. There is no confidentiality feature and signature linkability makes
ring signature solutions vulnerable to linking attack and insider adversaries. Similarly, multi-signature’s main feature is
user anonymity and requires a TTP for anonymous trading. Data leakage and transaction misrouting are possible with
a compromised third party. Lightweight implementation makes these solutions a suitable choice for user’s anonymity
applications.

Although encryption techniques are used in partner matching and secret sharing solutions, we put them in a separate
class. In the trust group class, the transaction parties make a secure link to exchange data. Although data confidential-
ity and transaction anonymity are provided by these solutions, user anonymity is limited to the pseudonymous feature,
which is attacked by address correlation. Having to exchange a huge number of transactions to match a partner and
dependency on an operator limit the applicability of the partner matching solution. The computational power and mem-
ory requirements should be considered for preserving user’s privacy by the secret sharing solution. These solutions are
more practical for BaaS models due to their performance conditions.

In the data isolation class, a user’s private data is isolated from the main ledger and is logged separately. This protection
class is more effective for BaaS applications. The access management and data storage are managed by IoT users in which
more protection can be performed. For instance, in the subnetwork solution, an anonymity protection is added to the
isolated data in the private storage by the bridge node. Although the off/on-chain solution provides data suppression and
separation, it allows transaction to be traced. Hence, it has a linkability risk. Traffic correlation on the on-chain network
can trace private data in the off-chain network. Furthermore, insider attackers can compromise a user’s privacy in the
off-chain network. This issue exists for sidechain and subnetwork solutions. Both these solutions need an intermediate
controller or TTP to connect to the main blockchain. As well, interconnections between side blockchains and the main
blockchain leads to traffic correlation, data leakage, and transaction tracking.

6.2 Privacy rank

To rate the evaluated solutions, we use the privacy rank introduced in Section 5. The privacy rank represents a numeric
value between 0 and 1 to each privacy-preserving solution and is calculated as follows:

Privacy rank =
(P⃗f .W⃗f − P⃗r.V⃗r) + 12

40
. (12)

The privacy rank of a privacy-preserving solution is based on the resultant of the provided privacy features and the
created privacy risks. Therefore, a proper preserving solution not only should provide more effective privacy features but
also needs to create less privacy risks. Based on this, the privacy rank makes a comprehensive scrutiny of the quality
of the privacy-preserving. The protection solutions are rated based on their privacy ranks. Rating based on normalized
values makes our evaluation scheme independent from the criterion weighing scales. This flexibility makes the secu-
rity engineers able to exploit our evaluation model for different weighting schemes. Table 7 includes the privacy rank
of each privacy-preserving solution. It shows that the key management solution has the smallest privacy rank and the
zero-knowledge solution has the largest ranking.

Based on the rating model introduced in Section 5 (Table 3), we rate the privacy-preserving solutions. On the basis
of this rating scale, we do not rate any evaluated protection solution as a poor protection solution. The key manage-
ment solution, with a privacy rank of 0.375, is a fair solution. Despite being easily implemented, this solution is not
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Rating scale Privacy-preserving solution Privacy rank (PR)

Poor (0≤PR< 0.2) — —

Fair (0.2≤PR< 0.4) Key management 0.375

Good (0.4≤PR< 0.6) Multisignature 0.4

Ephemeral pseudonym 0.425

Route hiding 0.475

Off/on-chain 0.475

Sidechain 0.475

Partner matching 0.475

Secret sharing 0.5

Data hiding 0.525

Subnetwork 0.525

Ring signature 0.525

Very good (0.6≤PR< 0.8) Zero-knowledge 0.625

Excellent (0.8≤PR≤ 1) — —

T A B L E 7 Privacy ranks and the
rates of the privacy-preserving solutions

recommended. Based on this rating model, the privacy rank of a good protection solution is bigger than 0.4 and smaller
than 0.6. Therefore, the good-rated solutions include the majority of the protection solutions, namely, multi-signature,
ephemeral pseudonym, off/on-chain, sidechain, partner matching, route hiding, secret sharing, data hiding, subnetwork,
and ring signature. Of note, the privacy rank indicates the privacy-preserving quality. Based on this, although the subnet-
work solution and multi-signature solution are rated as good solutions, the protection quality of a subnetwork solution
with the privacy rank of 0.525 is considerably higher than that of a multisignature solution with a privacy rank of 0.4.
Despite the imposed computational burden, the zero-knowledge based solution was the best. The privacy rank of the
zero-knowledge solution is 0.625 and is a very good solution. Our evaluations show that there is no privacy-preserving
solution with a privacy rank in the range of [0.8;1]. Therefore, we could not rate a solution with excellent scale.

Our evaluations show that the key management solution is not recommended for preserving an IoT user’s privacy
in the blockchain systems, due to its privacy features. Although good-rated solutions have privacy ranks at the range of
[0.4;0.6), the privacy-preserving solutions that their privacy ranks are bigger than 0.5 (eg, ring signature solution) offer bet-
ter privacy features. We recommend the zero-knowledge solution for preserving IoT users’ privacy in the blockchain-based
applications due to its privacy rank.

7 CONCLUSIONS

In this article, we presented users’ privacy issues in blockchain-based IoT applications and classified proposed
privacy-preserving solutions. We reviewed and analyzed each class of with respect to the privacy they afford. We proposed
an evaluation framework to calculate the quality of each. In this framework, an adjustable weighting scheme is defined to
score the privacy features and risks provided by each solution. We introduced the privacy rank, to represent the numeric
value associated with each evaluated solution. The value of the privacy rank is in a decimal range between 0 and 1 and
shows the overall quality of the privacy-preserving provided by a protection solution. The privacy rank value 0 represents
no privacy and a larger rank indicates better protection. The privacy rank value 1 represents full privacy.

We rated the privacy-preserving solutions based on their calculated privacy ranks. This rating is based on the nor-
malized values of the privacy resultant. It makes our evaluation scheme independent from the criterion weighing scales.
This flexibility allows security engineers to use this evaluation model with different weighting schemes. Selecting a
protection solution depends on the application domain and the privacy goal. In general view, our evaluation shows
that the key management solution is a fair solution and the zero-knowledge solution provides the best protection. The
zero-knowledge protection solution is rated as a very good solution and is recommended to preserve IoT user’s privacy in
the blockchain-based applications.
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